5 de set. de 2011

P.A.

A 1ª fase de um torneio de futebol é disputada por 15 equipes no sistema de turno e returno ( a equipe A, por exemplo, joga com a equipe B duas vezes: uma em seu campo e a outra no campo do adversário). Quantas partidas são disputadas ao todo, se os dois melhores classificados da 1ª fase fazem a final no mesmo sistema?

RESOLUÇÃO:

Vamos fixar a 1ª equipe, ela jogará 2 vezes contra 14 adversários, a equipe 2 jogará contra 13 duas vezes também, assim teremos

1ª equipe = 2x14 = 28 jogos
2² equipe = 2x13 = 26 jogos
.
.
.
14² equipe = 2x1 = 2 jogos
15² equipe = 2x0 = 0 jogos

Observe que podemos tratar este exercício como uma PA de razão r=-3, termo inicial a1=28 e calcular a soma de seus termos:

Sn = ( a1+an).n/2
Sn = (28 + 0).15/2
Sn = 28.15/2
Sn = 14.15
Sn = 210 jogos na 1ª fase

Na fase final teremos duas partidas, então 210+2 = 212
Ao final do campeonato teremos 212 partidas.

OUTRA FORMA DE RESOLVER:
Podemos resolver também por Análise Combinatória usando os arranjos de n elementos tomados p a p:
A15,2=15!/13!
A15,2=15.14.13! / 13!
A15,2= 15.14
A15,2= 210

Agora somamos com as partidas finais (2):

210+2=212

Problema de Análise Combinatória

Arnaldo, Bruno, Cláudio, Danilo, Eliza, Fabiana e Heloisa serão sorteados para compor uma comissão de 4 pessoas da siguinte forma: Serão soteados 2 dentre os quatro homens, e 2 dentre as três mulheres. A chance de Bruno ser sorteado para compor a comissão com Elisa é igual a:
A) 7/70
B) 2/5
C) 1/4
D) 1/3
E) 1/2

RESOLUÇÃO:

Primeiro temos que observar quais grupos podem ser formados dos 4 homens e 3 mulheres.
Para os homens:
C4,2=4!/2!2!
C4,2=6

Para as mulheres:
C3,2=3!/2!1!
C3,2=3

O total de grupos que será nosso espaço amostral é C4,2 . C3,2 = 6.3 = 18

Agora vamos ver as formas como Bruno e Elisa podem ser escolhidos:
Bruno
C3,1=3!/1!2!
C3,1=3

Elisa:
C2,1=2!1!1!
C2,1=2

Multiplique estes eventos ( Bruno e Elisa fazerem parte das comissões) será o nosso evento:
C3,1.C2,1 = 3.2 = 6

Agora calcule a probabilidade do nosso evento:
P = 6/18
P = 1/3

Letra D)

Problema de Análise Combinatória

Marcela e Mário fazem parte de uma turma de quinze formandos, onde dez são rapazes e cinco são moças. A turma reune-se para formar uma comissão de formatura composta por seis formandos, três rapazes e três moças. O número de diferentes comissões que podem ser formadas, de modo que marcela participe e mário não participe.

Resolução:

Como se trata de um problema envolvendo comissões a ordem dos elementos não importa, logo iremos trabalhar com a fórmula das combinações, porém observe que são dois grupos: O de rapazes e o de moças e além disso existe a condição de que 1 moça ( Marcela) e 1 rapaz ( Mário) não participem das comissões então excluiremos estes dois dos cálculos.

Rapazes:
Se não excluíssemos seria assim: C 10,3, no entanto Mário deve ser excluído então n = 10-1
Logo: C9,3 = 9!/3!(9-3)!

C9,3 = 9.8.7/3.2.1
C9,3 = 3.4.7
C9,3 = 84

Moças:
Aqui teremos que incluir Marcela no conjunto de 5 moças logo n= 5 e p=2

C4,2 = 4!/2!2!
C4,2 = 4.3.2!/2!.2!
C4,2 = 12/2
C4,2 = 6

Para sabermos as comissõers possíveis usamos o princípio multiplicativo da contagem:

C9,3 . C4,2

84.6

504

3 de set. de 2011

PROBABILIDADE

Uma comissão de 3 pessoas é formada escolhendo-se ao acaso entre Antônio, Benedito, César, Denise e Elisabete. Se Denise não pertencer à comissão, qual a probabilidade de César pertencer?
Resposta: 3/4

RESOLUÇÃO:

O número total de possibilidades na formação da comissão será dado por C5,3 pois temos 5 elementos (n=5) para escolher quais vão compor a comissão, porém antes quero falar sobre a fórmula que define as Probabilidades Condicionais, sua expressão matemática é:

P (AlB) = P ( A intersecção B ) / P ( B)

" Probabilidade condicional do evento A, uma vez que B tenha ocorrido"

Notem no enunciado a parte : " SE Denise não pertencer à comissão, qual a probabilidade de César pertencer?"

Entenderam? Queremos encontrar:
P (AlB) que é a probabilidade de César pertencer à comissão, dado que
P (B) Denise não pertence à comissão,
Porém, você deve estar se perguntando: "O que representa P ( A intersecção B)?", simples, é a probabilidade de César e Denise pertencerem ao mesmo tempo à comissão.

Vamos calcular primeiro P(B):
Como falei no início o número total de comissões será C5,3 pois são 5 pessoas para formar grupos de 3, então teremos C5,3 = 5!/3!(5-3)!, resolvendo este fatorial C5,3 = 10.
Para completar iremos agora formar grupos de 3 EXLUINDO um elemento que é a Denise, logo C4,3 = 4!/3!(4-3)! , o que nos dá C4,3 = 4, portanto a probabilidade P (B) de Denise não fazer parte da comissão será C4,3/C5,3 = 4/10.

Pronto,falta calcularmos P ( A intersecção B ) que já vimos que representa a probabilidade de Denise e César pertencerem à comissão, ora, para isto peguemos os 3 membros restantes e iremos formar grupos de 1, entenderam porque? Cada comissão possui 3 membros mas Denise e César têm que estar no grupo então reduzimos 2 elementos de n=5 e 2 elementos de p=3, logo:

P ( A intersecção B )=C3,1/C5,3 = 3/10

Organizando os dados obtidos:
P ( A intersecção B )=3/10
P ( B ) = 4/10

Portanto a Probabilidade Condiional pedida será:

P (AlB) = (3/10)/(4/10)
P (AlB) = 3/4

Espelhos Esféricos

Um espelho esférico côncavo tem raio de curvatura igual a 80 cm. Um objeto retilíneo de 2 cm de altura é colocado perpendicularmente ao eixo principal do espelho, a 120 cm dele.
Dê as características da imagem conjugada pelo objeto.





Acima podemos ver o objeto na frente do espelho vamos agora descobrir as características da imagem conjugada pelo objeto.

A primeira coisa a fazer é descobrir a distância da imagem em relação ao vértice do espelho, utilizaremos a Equação de Gaus ou Equação dos pontos conjugados:

1/f = 1/p + 1/p´

Onde:
f = Distância focal do espelho ( Vale a metade do raio de curvatura f=R/2).
p = Posição do objeto em relação ao vértice do espelho
p´= Posição da imagem em relação ao vértice do espelho

Foi nos repassado R = 80 cm então vamos dividir por 2 para obtermos f, já foi dito que f=R/2, então:

f=80 cm/2
f= 40 cm
Uma observação a ser feita aqui é de que se o espelho fosse convexo tanto R como f assumiriam valores negativos, ok?

A distância dada de 120 cm é a distância do objeto ao vértice do espelho, na fórmula é p.
Então ficamos assim:

1/f = 1/p + 1/p´
1/40 = 1/120 + 1/p´
1/40 - 1/120 = 1/p´
Tirando MMC teremos:

(3-1)/120 = 1/p
2/120 = 1/p´
2p´= 1.120
p´= 120/2
p´= 60 cm, esta é a distância da imagem ao vértice do espelho e como o sinal dela é positivo a imagem é chamada real.

Vamos agora definir se a imagem é invertida ou direita, ampliada ou reduzida, para isto precisaremos estabelecer a fórmula do aumento linear transversal ( A ), ela é expressa matematicamente por:

A = i/o = - p´/p ( Agora nos temos uma dupla igualdade mas não se preocupe nunca utilizamos nesta forma, só precisamos trabalhar com dois membros da igualdade.

A = - p´/p

Para definir o aumento linear transversal precisamos dos valores de p e p´ que já obtivemos então:

A = - 60 cm/120 cm
A = - 1/2 Note que A é adimensional ou seja não possui unidade de medida e representa se a imagem é ampliada ou reduzida, como 1/2 é um número menor que 1 a imagem é menor que o objeto logo, reduzida.
E quanto ao sinal de A, você observou que é negativo? Devido ao sinal ser negativo a imagem será invertida, ou seja, estará de "cabeça para baixo" em relação ao objeto.
Falta falarmos sobre o tamanho "i" da imagem sendo dado o tamanho "o" do objeto.
Vimos que A=-1/2, e que i/o também é igual a A, então faremos:
1/2 = i/o ( Observe que aqui iremos nos abstrair do sinal aritmético) porque não existe nada com tamanho negativo. Sabemos que o valor do tamanho do objeto "o" vale 2 cm portanto:
1/2 = i/2cm
2cm = 2i
2i = 2cm
i = 2cm/2
i = 1 cm ( Compare com o tamanho do objeto o=2 cm e vc verá que a imagem realmente é menor que o objeto)

Para finalizar é só dizer a imagem encontra-se a 60 cm do espelho é reduzida e invertida e sua altura é de 1 cm.


Movimento Harmônico Simples ( MHS)

Um corpo de 2 kg estica de 10 cm uma mola à qual está suspenso na vertical e em repouso. O corpo, então, é colocado numa superfície horizontal sem atrito, ligado à mola, conforme a figura abaixo. Nestas circunstâncias, o corpo é deslocado de 5 cm e abandonado, em repouso. ( g=10 m/s²).
Qual o período de oscilação da mola?



Resolução:

Dados:
m= 2kg
x = 10 cm ( Não podemos esquecer de converter para metros, unidade padrão do MKS)=0,1 m
g - 10 m/s²

Inicialmente a massa estava na vertical e se encontrava em equilíbrio estático então desconsiderando-se a massa da mola podemos dizer que a força da mola sobre a massa m equilibrava o seu peso, para que precisamos disto? Para calcular o valor da constante elástica k, vamos lá:

Peso = Felástica ( A Força elástica é dada pela Lei de Robert Hooke F = kx)

Teremos:

Peso = kx
m.g = k.x
2.10 = k.0,1
20 = 0,1k
ou
0,1k = 20
k = 20/0,1
k = 200 N/m

Como descobrimos a constante elástica da mola (k) vamos agora à segunda parte do enunciado e para isto precisaremos relembrar a fórmula T = 2π√(m/k)
Temos m=2 kg e k=200N/m, só precisamos descobrir o período das oscilações T.

T= 2.3,14. (2/200)
T= 6,28. 1/100
T=6,28/10

T=0,628 s


Ondulatória

Uma corda de violão tem 0,6 m de comprimento. Determine os três maiores comprimentos de ondas estacionárias que se pode estabelecer nessa corda.

Resolução:

A fórmula para este problema é que o número de ventres (n) multiplicado pela metade do comprimento de onda ʎ nos dá o comprimento L da corda de violão assim teremos:

n.ʎ/2 = L

ʎ = 2L/n

Foram pedidos os 3 maiores comprimentos de onda portanto como n e ʎ são INVERSAMENTE proporcionais quanto menor for o valor de n maior será o valor de ʎ uma vez que L é constante.
Teremos que encontra os três primeiros números inteiros não nulos e não negativos ora na matemática é o conjunto Naturais não negativos e não-nulos.
{ 1,2,3} são os três menores valores .

Então:
Para n=1 ʎ=2.0,6m/1
ʎ = 1,2 m

Para n=2 ʎ=2.0,6m/2
ʎ = 0,6 m

Para n=3 ʎ=2.0,6m/3
ʎ = 0,4 m

Combinatória
Vamos resolver mais uma questão de Análise Combinatória.
Em um congresso há 30 físicos e 20 matemáticos. Quantas comissões de 3 físicos e 4 matemáticos podemos formar?
Resolução:
Lembram-se da explicação da postagem anterior? Sobre diferenças entre Permutações, Arranjos e Combinações? Vamos utilizá-la aqui.
Observem que há grupos de 3 físicos escolhidos dentre 30 pessoas e grupos de 4 matemáticos pegos do espaço de 20.
Se não vamos pegar todos os elementos então não se trata de PERMUTAÇÕES portanto somente pode ser combinações ou arranjos. Para chegar a uma resposta vamos pensar: Importa se nós escolhermos um elemento A ou B antes? O grupo AB não é o mesmo que BA? Se a resposta for que não importa temos Combinações em caso contrário Arranjos. Já pensaram? Pois bem NÃO IMPORTA a ordem logo vamos utilizar a fórmula das Combinações.
A fórmula é esta Cn,p , porém precisamos lembrar que teremos DOIS grupos, um de Físicos e outro de Matemáticos, logo:
Para os físicos:
C30.3 ( n=30 e p=3)
Para os matemáticos:
C20,4 ( n=20 e p=4)
Fazendo os cálculos teremos:
C30,3 = 30!/3!(30-3)!
C30,3 = 30!/3!27!
C30,3 = 30.29.28/3.2.1
C30,3 = 10.29.14 = 4060
C20,4 = 20!/4!(20-4)!
C20.4 = 20!/4!(16)!
C20,4 = 20.19.18.17/4.3.2.1
C20,4 = 5.19.3.17 = 190.17 = 4845
Para finalizarmos é só multiplicar as duas quantidades:
4060x4845
19670700

Análise Combinatória

Vamos resolver mais uma questão de Análise Combinatória.
Em um congresso há 30 físicos e 20 matemáticos. Quantas comissões de 3 físicos e 4 matemáticos podemos formar?
Resolução:
Lembram-se da explicação da postagem anterior? Sobre diferenças entre Permutações, Arranjos e Combinações? Vamos utilizá-la aqui.
Observem que há grupos de 3 físicos escolhidos dentre 30 pessoas e grupos de 4 matemáticos pegos do espaço de 20.
Se não vamos pegar todos os elementos então não se trata de PERMUTAÇÕES portanto somente pode ser combinações ou arranjos. Para chegar a uma resposta vamos pensar: Importa se nós escolhermos um elemento A ou B antes? O grupo AB não é o mesmo que BA? Se a resposta for que não importa temos Combinações em caso contrário Arranjos. Já pensaram? Pois bem NÃO IMPORTA a ordem logo vamos utilizar a fórmula das Combinações.
A fórmula é esta Cn,p , porém precisamos lembrar que teremos DOIS grupos, um de Físicos e outro de Matemáticos, logo:
Para os físicos:
C30.3 ( n=30 e p=3)
Para os matemáticos:
C20,4 ( n=20 e p=4)
Fazendo os cálculos teremos:
C30,3 = 30!/3!(30-3)!
C30,3 = 30!/3!27!
C30,3 = 30.29.28/3.2.1
C30,3 = 10.29.14 = 4060
C20,4 = 20!/4!(20-4)!
C20.4 = 20!/4!(16)!
C20,4 = 20.19.18.17/4.3.2.1
C20,4 = 5.19.3.17 = 190.17 = 3230
Para finalizarmos é só multiplicar as duas quantidades:
4060x4845
19670700

2 de set. de 2011

Problema de Análise Combinatória

De quantas maneiras podemos escolher 3 numeros distintos entre os números ímpares de zero a dez?
E qual a diferença entre permutação, arranjo e combinação?

Resolução:

A diferença entre arranjos, permutações e combinações depende da ordem ou do número de elementos com os quais vc irá trabalhar, irei explicar através de exemplos.

Permutações:
Imagine que há três pessoas na fila de um banco A , B, e C.
Podem ser colocadas das formas:

A B C
A C B
B A C
B C A
C B A
C A B

Observe que são 6 possibilidades, certo?
A fórmula é dada utilizando-se o Princípio Fundamental da Contagem:
3.2.1 = 6
ou em termos matemáticos:
P3 - Chamamos permutação de três elementos.

Arranjos:

Imagine agora as mesmas pessoas A, B e C porém uma não pode ser atendida.
Neste caso podemos formar vários grupos de 2 elementos retirados de 3 e como a ordem na fila diferencia um grupo de outro temos o tipo de agrupamento denominado Arranjo de 3 elementos tomados 2 a 2. ( Dizemos Arranjos de n elementos tomados p a p)

A B
B A
A C
C A
B C
C B

A fórmula será An,p = n! / (n-p)! no nosso exemplo A3,2 = 3!/(3-2)! --- A3,2 = 3!/1!---- A3,2 = 6

Combinações:
Neste agrupamento a ordem é desconsiderada, ou seja, o grupo AB=BA, AC=CA e BC=CB, então teremos só 3 grupos.
AC
AB
BC
A fórmula será Cn,p = n! / p!(n-p)!
No nosso exemplo:

C3,2 = 3! / 2!(3-2)!
C3,2 = 3!/2!.1!
C3,2 = 3

Passando agora ao seu exercício, pense bem, NÃO iremos utilizar permutação pois não entram TODOS os elementos e sim 3 em cada grupo, basta saber agora se interessa a ordem ou não.
No caso não interessa a ordem então teremos Combinações de números ímpares de 0 a 10 ( 1,3,5,7,9) veja que nós temos 5 elementos que serão tomados 3 a 3.
Logo:
C5,3= 5! / 3!(5-3)!
C5,3= 5! / 3!.2!
C5,3= 5.4.3! / 3!.2!
C5,3= 20/2
C5,3= 10
Portanto podemos escolher de dez formas diferentes se não importa a ordem.

1 de set. de 2011

Uma questão sobre atrito estático.

Se o coeficiente de atrito estático entre os pneus de um carro e a estrada é dado por "x", e a aceleração da gravidade representada por g, a aceleração máxima que o carro pode ter será calculada por: (considere a estrada sem inclinação)

a)x/g
b)x.g
c)g/x
d)x².g
e)x²/g

Resolução:

A aceleração será máxima quando tivermos força de atrito estática máxima ou seja Fat=u.Normal
A Normal no caso será o peso do veículo Normal=m.g
Então teremos m.a=u.Normal
m.a=u.m.g
Simplificando m:
a=u.g
Mas u=x, logo:
amáx=x.g

30 de ago. de 2011

Determinar o comprimento da mediana AM do triangulo cujos vértices são A(2,3) B( 4,-2) e C(0,-6)

Resolução:

Como queremos a distância entre o vértice A e o ponto central de CB só precisamos calcular o ponto central de CB:

xMbc = (0+4)/2
xMbc = 2
e
yMbc = (-2-6)/2
yMbc = -4

Agora calcule a distância entre os pontos A e o ponto central de BC.

d = Raiz quadrada de [ (2-2)²+(3-(-4))²]
d = R Q de (0+49)
d = 7

27 de ago. de 2011

São dadas.duas.retas.paralelas.Marcam-se.10.pontos..distintos.sobre.uma.reta.e.8.pontos.distintos.sobre.a.outra.Quantos.triângulos.podemos.formar.ligando.3.quaisquer.desses.18.pontos?


Resolução:


Primeiro.vamos.imaginar.uma.das.duas.retas.qualquer.

Se.pegarmos.a.que.possui.10.pontos.e.cada.ponto.for.um.dos.vértices.dos.triângulos,então.os.pontos.da.outra.reta.serão.os.vértices.restantes.que.serão.COMBINADOS.assim.teremos:

C8,2=8!/2!.(8-2)!

C8,2=8!/(2!.6!)

C8,2=8.7.6!/2!.6!

C8,2=8.7/2!

C8,2=4.7

C8,2=28

Como.temos.10.pontos.na.outra.reta.multiplicamos.o.valor.acima.por10.esperando.o.outro.resultado.

Reta.1=10x28

Reta.1=280


A

nalogamente.para.a.reta.restante.teremos.:

8xC10,2=360


S

omamos.então.os.dois.resultados.obtendo.a.resposta.final.


280+360=640

14 de jun. de 2010

COLISÕES

(UFPB) Uma bola de massa igual a 0,5 Kg e velocidade de 72 Km/h se choca frontal e elasticamente contra uma parede rígida. O módulo da variação do momento linear ( Quantidade de movimento) da bola é de:
a) 36 Kg.Km/h
b) 10 Kg.m/s
c) 72 Kg.m/s
d) 20 Kg.m/s

Resolução:

Vamos considerar a QM (Quantidade de movimento) da bola antes do choque:

v=72Km/h
m=0,5Kg

Portanto a quantidade de movimento da bola antes da colisão é:

Qbola=+72.0,5
Qtotal=36Kg.Km/h

Como a colisão é elástica temos que e=1 logo a quantidade de movimento da bola será a mesma porém com sentido oposto.

Q'bola=-72.0,5
Q'bola=-36Kg.Km/h

Para calcularmos a VARIAÇÃO da QM basta fazer:

Variação= Qfinal-Qinicial
Variação=-36-(+36)
Variação=-36-36
Variação=-72Kg.Km/h

Converta agora de Km/h para m/s, basta dividir por 3,6:

Variação= -72/3,6 Kg.m/s
Variação= -20Kg.m/s

Alternativa (d).

13 de out. de 2009

Derivação

Um homem com 1,8m de altura caminha em direção a um edifício, com uma velocidade de 1,5 m/s. Se existe um ponto de luz no chão a 15m do edifício, com que velocidade a sombra do homem estará diminuindo, quando ele estiver a 9m do edifício?

Resolução:

Utilizando uma figura que não temos como expor aqui chegaremos à seguinte proporção:

15/S = (15-x)/1,8
15.1,8 =S.(15-x)
27 = 15S-Sx

Temos que efetivar dois passos:

1º) Achar o valor da sombra S relativa à posição x=9 m.

27 = 15S-S.9
27 = 15S-9S
27 = 6S
6S = 27
S = 27/6
S = 9/2 m

2º) Diferenciar a expressão 27 = 15S -Sx:

d(27)/dt = d(15S)/dt - Sdx/dt - xdS/dt
0 = 15dS/dt - (9/2).-1,5 - 9dS/dt
0 = 15dS/dt + 27/2 - 9dS/dt
0 = 6dS/dt + 27/2
6dS/dt = -27/2
dS/dt = - 27/12
dS/dt = - 9/4 m/s

Fácil não é?